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A THRESHOLD THEORY FOR SIMPLE
DETECTION EXPERIMENTS1
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The two-state "high" threshold model is generalized by assuming that
(with low probability) the threshold may be exceeded when there is
no stimulus. Existing Yes-No data (that rejected the high threshold
theory) are compatible with the resulting isosensitivity (ROC) curves,
namely, 2 line segments that intersect at the true threshold prob-
abilities. The corresponding 2-alternative forced-choice curve is a 45°
line through this intersection. A simple learning process is suggested
to predict S's location along these curves, asymptotic means are derived,
and comparisons are made with data. These asymptotic biases are
coupled with the von Bdk&y-Stevens neural quantum model to show
how the theoretical linear psychometric functions are distorted into
nonsymmetric, nonlinear response curves.

A classic postulate of psychophysics
is that some stimuli or differences
between stimuli never manage to
affect the central decision making
centers; others, of course, do. In a
phrase, peripheral thresholds were
assumed to exist. At least three types
have been distinguished: absolute,
difference, and detection. It is not,
however, clear that there is any real
difference among them. Absolute
thresholds seem to be the same as
detection ones except that the only
noise is internal, and many difference
threshold experiments differ from de-
tection experiments only in the nature
of the background stimulus, e.g., a
pure tone or noise.

Recently the literal interpretation
of the threshold postulate has been
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questioned by some detection workers,
e.g., Swets (1961), Swets, Tanner, &
Birdsall (1961), and Tanner & Swets
(1954a) who have argued that thresh-
olds, if one still wishes to call them
that, are introduced only at the
central decision level itself. What is
important in this view is that the
value of the "response threshold"—
usually it is called something else,
such as a decision criterion or cutoff—
is not a fixed feature of the organism,
but rather it is a parameter under the
control of the experimental instruc-
tions, information feedback, payoffs,
and other motivational factors. Two
versions of such a threshold-free
decision theory have been developed
in detail. For signal detectability
theory see Birdsall (1955), Green
(1960), Licklider (1959), Peterson,
Birdsall, and Fox (1954), Swets and
Birdsall (1956), Swets, Fanner, and
Birdsall (1955, 1961), Tanner (1955,
1956), Tanner and Birdsall (1958),
Tanner and Norman (1954), and
Tanner and Swets (1954a, 1954b).
For the choice theory see Luce (1959),
Restle (1961), Shepard (1957), and
Shipley (1960, 1961). A number of
experiments have been reported which
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agree with the main features of both
theories. In addition to those re-
ported in the above references, there
are studies by Clarke, Birdsall, and
Tanner (1959), Creelman (1959,1960),
Egan, Schulman, and Greenberg
(1959), Green (1958), Green, Birdsall,
and Tanner (1957), Shepard (1958),
Swets (1959), Swets, Shipley, McKey,
and Green (1959), and Veniar (1958a,
1958b, 19S8c). Although the two
theories differ conceptually, their pre-
dictions are so similar that it has been
impossible as yet to decide between
them.

In the course of evaluating signal
detectability theory, a contrasting but
equally explicit, sensory threshold
model has been stated (Swets, 1961;
Swets et al., 1961; Tanner & Swets,
1954a). It postulates that the thresh-
old is well above the noise level.
There is no doubt that this model is
inadequate, and it has been concluded
that if thresholds exist they must be
so far down in the noise that the
notion of a threshold ". . . is not a
workable concept . . . [and] for
practical purposes, not measurable"
(Swets et al., 1961, p. 336). At least
two sets of behavioral data do not
jibe easily with this view.

First, there are studies, beginning
with von B6kesy (1930) and Stevens,
Morgan, and Volkmann (1941), of the
detection of energy increments of a
pure tone background. Some of the
results reported seem consistent only
with a quantal (threshold) model.
Although a number of people are
dissatisfied with aspects of the experi-
mental procedure and although the
psychometric function has not always
been found to be rectilinear as pre-
dicted by some quantum theorists, the
recurring n: (n — 1) relation between
the probability one and zero intercepts
of the psychometric function has not
been accounted for in any satisfactory

way by a continuous, threshold-free
model. The only published attempt
that I know of is by Barlow (1961),
and his rationalization seems com-
pletely ad hoc to me.

Second, Shipley (1961) has obtained
some simultaneous detection and rec-
ognition data which indirectly sug-
gest that detection thresholds exist.
On each trial either a 1,000-cps tone
in noise, a 500-cps tone in noise, or
noise alone was presented, and the
subject was required to decide whether
or not a tone was present and, in-
dependent of his detection response,
to attempt to recognize which it was.
(Controls were run in which no
recognition response was required and
in which recognition was only required
when the subject said a tone was
present; there did not seem to be any
interaction between the forced rec-
ognition responses and the detection
responses.) If we separate the two
detection responses, then we can ask
how well he recognizes when he says
he heard a tone as against when he
said he did not hear one. If there
really is a sensory threshold and if he
reports no tone present only when the
threshold is not exceeded, then there
should not be any differential recogni-
tion of the tones on the no-detect
trials. This is what happens, as can
be seen in Table 1, for both the Yes-
No and forced-choice designs.

This paper has two main purposes.
First, a simple threshold model is
described which appears to give as
satisfactory an account of the response
data as do the continuous detection
theories. Second, a way is suggested
to graft onto this sensory threshold
model a decision process which pre-
dicts in some detail the biasing effects
of information feedback, payoffs, and
presentation probabilities. It is note-
worthy that in conjunction with the
present threshold model the usually
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TABLE 1

PROBABILITY OF RECOGNITION CONDITIONAL ON THE DETECTION RESPONSE

Design

Yes-No

Forced-
choice

Presentation

500 cps
1,000 cps
noise

500 cps
1,000 cps

Subject

i

Yes

90
8

41

Correct

88
14

No

78
76
72

Incorrect

43
47

2

Yes

89
20
57

Correct

87
25

No

74
75
79

Incorrect

63
63

3

Yes

88
12
48

Correct

87
13

No

31
42
32

Incorrect

43
41

Note.—These data from a simultaneous detection and recognition experiment are reported by Shipley (1961).
On each trial of the Yes-No experiment either a 500-cps tone in noise, a 1,000-cps tone, or noise alone was presented,
and the subject was required to respond whether or not a tone was presented and, independent of that response,
to recognize which tone it was. In the table, the conditional probabilities (decimal points are omitted) that a
presentation is recognized as the 500-cps tone are estimated separately for those trials when the subject said he
detected a tone (Yes columns) and for those when he said he did not (No columns). On each trial of the two-
alternative forced-choice experiment, either 500 cps or 1,000 cps appeared in exactly one of the two temporal
intervals. The subject was required to state which interval contained the tone and which tone it was. The condi-
tional probabilities that the presentation is recognized as the 500-cps tone are estimated separately for those trials
when the subject chose the interval containing the tone (Correct columns) and for those when he was Incorrect
(Incorrect columns). Note that the conditional probabilities depend on the presentation in the Yes and Correct
columns but are independent of the presentations in the No and Incorrect columns.

assumed expected-payoff model is
completely unacceptable. Instead, a
learning process is postulated. Thus,
the present psychophysical theory is,
in part, an asymptotic learning theory,
as seems sensible.

YES-NO DETECTION EXPERIMENTS

It is generally agreed that one of
the simpler detection experiments is
the Yes-No design. On each trial un-
ambiguous signals mark off a time
interval during which either a back-
ground or the background plus a
stimulus3 is presented, and the subject
is required to indicate whether or not
he thinks the stimulus is there. Often
the possible responses are said to be

8 In the signal detectability literature, the
physical event to be detected by the subject
has generally been called a "signal." As
long as one is working with tones in noise and
the like, this does not seem inappropriate;
however, nothing in this theory restricts one
to signals in this sense, so I have elected to
use the more general term "stimulus."

Yes and No, although in practice he
usually selects one of two buttons to
press. In many of the acoustic experi-
ments, the background is white noise
and the stimulus a pure tone, but this
is not necessary. For example, in the
von Be"kesy-Stevens quantal experi-
ments, the background is a pure tone
of one energy and the background plus
stimulus is a tone of the same fre-
quency but different energy. None-
theless, I shall conventionally speak
of the background as noise.

Let n denote a typical presentation
of noise, s a typical presentation of
stimulus plus noise, and Y the Yes
and N the No responses. The basic
data are the relative frequencies of a
Y response given s, j>(Y\s), and of Y
given «, f>(Y\ri), which are assumed
to arise from and therefore to estimate
the true conditional response prob-
abilities p(Y\s) and p(Y\n). With
or without "hats," it is clear that
p(N\s) = 1 - p(Y\s) and p(N\n)
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= 1 — p(Y\n). Our problem is, first,
to explain how these two conditional
probabilities relate to one another
when we vary such experimental
parameters as the a priori probability
P of presenting s (and so 1 — P of «),
the physical magnitudes of 5 and n,
and the payoffs, The proposed an-
swers, although far from complete,
permit some experimental evaluation
of the model. Second, given estimates
of parameters from Yes-No data, we
must try to account for the data from
other experimental designs involving
the same s, n, and subject.

We shall suppose that thresholds
exist in the following sense. When
either the noise alone or the stimulus
plus noise is presented, the organism
enters one of two hypothetical states
denoted D and D. A "detection ob-
servation" will be said to have oc-
curred when he goes into State D and
not to have occurred when he goes
(or stays) in D. These states are
assumed to be internal to the subject
and therefore cannot be directly ob-
served in terms of behavior. Whether
they can be studied by physiological
methods is an open question that we
need not discuss here. We do not
suppose that the same state neces-
sarily results whenever a particular
stimulus is presented, but rather that
the state entered is determined by a
random process that is characterized
by fixed probabilities for a given
subject, stimulus, noise, and experi-
ment. Just where the variability
enters in is not specified by the theory.
The underlying conditional prob-
ability model for these detection
observations (not responses) is

Presentation
probability

P
1 - P

Presen-
tation Observation

D D

that noise alone generates a detection
observation, i.e., that it "passes" the
threshold, and q(s), the true prob-
ability that stimulus plus noise gener-
ates a detection observation. We
assume that q(s) > q(n).

In the absence of data, one might
have supposed that P(Y\s) = q(s)
and P(Y\n) = q(ri), but this cannot
be because as a matter of fact the
values of p(Y\s) and p(Y\ri) depend
upon at least P, the instructions, and
the payoffs; and these differences are
much too large and systematic to be
ascribed to variability in the data.
Evidently, then, the subject must
convert some of the D observations
into N responses or some of the D
observations into F responses, de-
pending upon how he wishes to bias
the outcome. On the assumption that
the D observations are all indistin-
guishable, or, at least, that the 5 and n
distributions of D observations are
the same and that this is also true of
the D observations, it is plausible that
the bias involves responding "in-
correctly" to some random fraction
of the observations. If so, we obtain
two different sets of equations depend-
upon which bias is introduced:
if p(Y\ri) < q(n), then

p ( Y \ s ) = tq(s)
p(Y\n) = tq(n),

or if p(Y\ri) > q(n), then

p(Y\s) = 2(5)+«[l -q(s)
p(Y\n) = <z(») + «[l -<z (

[1]

[2]

In words, q(n) is the true probability

where 0 < t, u < 1.
For the moment, we are not con-

cerned about the actual values of the
bias parameters t and «; rather we
assume that any particular value can
be made to arise, and we eliminate
these unknowns from Equations 1 and
2 to obtain the dependence of p(Y\s)
upon p(Y\n) with q(s) and q(n) as
parameters:
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p(Y\s) =
q(n} p(Y\n),

q(s) - q(n)
1 - q_(n) '

iip(Y\n) < q(n).

iip(Y\n) >
[3]

This equation describes a very simple
function, namely, a straight line
segment from (0, 0} to (q(n), q(s)) and
another from (q(n), q(s)) to (1, 1), the
two portions of which we shall speak
of as the lower and upper limbs, re-
spectively.

In the signal detectability literature
the function relating p( Y \ s) to p (Y \ n)
has been called a receiver operating
characteristic or, more briefly, an
ROC curve, but it seems more ap-
propriate to call it an isosensitivity
curve.4 In that theory, it is truly a
smooth curve. Examples of curves
generated by detectability theory are
shown in Figure 1 and of ones gener-
ated by Equation 3, in Figures 2 and 3.

The high threshold model discussed
by Swets (1961), Swets, Tanner, and
Birdsall (1961), and Tanner and
Swets (1954a) is the special case of
this one in which q(n) = 0, and so it
consists only of the upper limb, i.e., of
the line segment from (0, q(s)) on the
ordinate to (1, 1). This is not a satis-
factory summary of the data, but the
two line segments of Equation 3 do
about as well as any of the continuous
theories with the same number of free
parameters, namely, two. For ex-
ample Swets, Tanner, and Birdsall
(1955, 1961) report data on visual
brightness for four subjects, where the
payoffs were varied and P was held
at 1/2. And Tanner, Swets, and
Green (1956) report acoustic data on
the detection of a 1,000-cps tone in
white noise for two subjects, where the
(symmetric) payoffs were held fixed

4 1 hope that the greater naturalness of this
term, as compared with equisensitivity, will
be adequate compensation for mixing Greek
and Latin roots.

and P was varied from 0.1 to 0.9 in
steps of 0.2. In Figure 1, 1 have pre-
sented the data and detectability
curves for one subject from each
experiment, choosing in each case the
subject that most favors signal de-
tectability theory. All of the data
and the curves of the present thresh-
old model are shown in Figure 2 for
the visual experiment and in Figure 3
for the acoustic experiment. Through-
out the theoretical curves were fit by
eye, because no optimal statistical
procedure is known. (The theoretical
crosses in Figure 3 will be discussed
later.)

In evaluating the acoustic data,
two facts are important. First, the
p(Y\s) coordinate of each data point
is based upon a sample of 300 P, ob-
servations and the p(Y\n) coordinate
on 300 (1 — P) observations. Sec-
ond, successive pairs of points reading
around the curve, were generated
under identical experimental condi-
tions. Thus, there can be little doubt
that there is variability beyond the
binomial associated with each ob-
servation point.

I would judge that the visual data
slightly favor the threshold model and
the acoustic data, the detectability
model. Although different modalities
may well involve different processes,
neither set of data seems particularly
conclusive. One feature of both sets,
however, casts suspicion upon the
present threshold model. The model
says that the isosensitivity curve has
a sharp corner which all too often
seems to float free of these data points.
Of course, this is exactly what would
happenjwere the true function a
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Visual Brightness
Subject 4

Acoustic
Subject 2

FIG. 1. Yes-No detection data and the corresponding theoretical isosensitivity curves
derived from signal detectability theory. (The visual brightness data, reported by Swets
et al., 1955, 1961, were obtained under the same stimulating conditions with a presentation
probability of 0.5, but with different payoff matrices. The detection of a tone in noise data,
reported by Tanner et al., 1956, was obtained under the same stimulating conditions with a
fixed symmetric payoff matrix, but with different presentation probabilities.)

cornerless curve; hence, this threshold
model does not deserve serious con-
sideration unless the lonely corners
are explained. A reason is suggested
later.

TWO-ALTERNATIVE FORCED-CHOICE
EXPERIMENTS

In the two-alternative forced-choice
design two time intervals are denned
and the stimulus is, and is known to
be, in exactly one. Thus, the two
presentations are the ordered pairs
(5, n) and (n, s). The subject responds
by saying which interval, 1 or 2, he
believes to have contained the stimu-
lus. Assuming the above threshold
formulation, there are four possible
observations, (D, D), (D, D}, (D, D)
and (D, D), of which two, (D, D) and
(D, D) give the subject no indication
of which response to make. It seems
plausible, at least when the payoffs
are not too extreme, that the subject
should apply biases only to these two
ambiguous cases. Thus, we assume
that he always responds 1 when

(D, D) occurs, never when (D, D)
occurs, some proportion v when {D, D)
occurs, and another proportion w
when (D, D) occurs. If we assume
that the observation probabilities in
the two intervals are independent,
then the probability of, say, a (D, D}
observation when (s, n) is presented is
2(s)[l ~ Q.(n)~] because q(s) is the
probability that the stimulus plus
noise exceeds the threshold and
1 — q(n) is the probability that noise
alone fails to exceed it. The other
cases are similar, and they lead to

(w)] + vq(s)q(n)

<Z (*)][! -«(»)] [4]

/»(! !<»,
vq(n)q(s)

], [5]

where 0 < v, w < 1.
It follows by subtraction that

p(\\(s,n)) = p(l\(n,s))
, [6]
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Subject 1 Subject 2

67

Subject 3

.0 0 .2 .4 .6 .8 1.0
p(Y|n)

Subject 4
1.0

.4

.2

.2 .4 .6 .8 1.0 0

p(Y|n)

.2 .4 .8 1.0

KIG. 2. Yes-\o visual brightness detection data from Swets, Tanner, and Birdsall (1955,
1961) and the corresponding theoretical isosensitivity curves derived from a threshold theory.
(Each coordinate of each point is based upon 200 observations.)

Subject 1 Subject 2

0 ,2 .4 .6 .8 1.0 .4 .6 .8 1.0

•"IG. 3. Yes-No acoustic (tone in noise) detection data from Tanner, Swets, and Green (1956)
and the corresponding theoretical isosensitivity curves derived from a threshold theory.
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so the isosensitivity curve is a
line segment with slope 1 running
from <g(»)[l -<?(*)], g(s)[l -g(n)]> to
<l-g(S)[l-g(»)],l-g(»)r.l-g(s)]>.
Thus, for example, if q(s) = 0.9 and
q(n) = 0.2, the segment runs from
(0.02, 0.72) to (0.28, 0.98).

It is also easy to see from Equations
4 and 5 that when v — w — q(n)q(s)/
{q(n)q(s} + [1 - g(»)][l - g(s)]},
then p (11 (s, «)) = g (s) and £ (11 (n, s))
= q(n). That is, the two-alterna-
tive forced-choice isosensitivity curve
passes through the point whose co-
ordinates are the true threshold
possibilities.

These last two remarks, coupled
with the results about the Yes-No
design, give a way to estimate the true
threshold probabilities. Suppose for
the moment that the several response
probabilities are known. The point
(q(ri),q(s)} lies both on the 45° line
passing through (p(\. [ (n, s)) , p ( l \ (s, n)))
and on a line passing through ( p ( Y \ n ) ,
p(Y\s)} and either (0, 0) or (1, 1), de-
pending upon which limb of the Yes-
No model is involved. Thus, the
intersection of one of these two pairs
of lines is the point (q(n), q(s)). The
geometry is shown in Figure 4.

So far as I know, no empirical
isosensitivity curves have been pub-
lished for the two-alternative forced-
choice experiment, so we cannot check
our prediction that it is a straight line
with slope 1. This prediction differs
considerably from the curve—which
is also symmetric about the diagonal
from (0, 1) to (1, 0}—predicted by
signal detectability theory.

ASYMPTOTIC LEARNING

We turn next to the question of the
values of the biasing parameters, t, u,
v, and w. In the decision and choice
theory models for these experiments,
it has been customary to assume that
the subject selects values for the

biasing parameters so as to maximize
his expected payoff. Let the payoff
structure be

Presentation Presen-
probability tation Response

Y N
P

1 - P [ On

"21

then if the subject is on the lower limb
of the threshold model the expected
payoff is

E(o) = Pp(Y\ s)0li
+ P[1 -p(Y\s)-]olt

+ (1 - P)p(Y\n)on

+ (1 -P)[l -p(Y\n]on

= t[Pq(s)(on - 012)
+ (1 - P)g(»)(o2l - OM)]
+ Pou + (1 - P)022.

Because this equation is linear in t, the
maximum occurs either at t = 0 or
t = 1. A similar calculation for the
upper limb yields either u = 0 or
u = 1. Thus, the expected payoff
model places the subjects at one of
three points: (0,0), (q(n), q(s)}, or
(1, 1). This is clearly wrong (see
Figures 2 and 3).

Whether this prediction is wrong
because of the threshold model or be-
cause of the expected payoff model is
less easy to decide. One thing about
the expected payoff model should be
noted: knowledge of the two subject-
determined conditional probabilities
p ( Y \ s ) and p(Y\n) is needed to
calculate the values of the parameters.
Certainly no one will claim that the
subject "knows" these, even un-
consciously, in a way that he can
actually calculate expected values;
more likely, he arrives at his biases by
a process of adjusting to his experience
—by learning. It is curious that no
one has yet evolved a learning theory
which, asymptotically, predicts the
maximization of expected values. An
alternative, and to my mind more
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„ i.o

34
"

p(Y|n)
-i-

qln)
LOWER LIMB

. p(Y|n)
ptl|<n,s>)

UPPER LIMB

1.0

FIG. 4. The geometry relating the Yes-No isosensitivity curves, the two-alternative
forced-choice isosensitivity curves, and the true threshold probabilities.

reasonable, tack is to postulate di-
rectly a learning process, preferably
one that has already achieved some
success in other areas, and to test its
asymptotic predictions against be-
havior. This we do.5

Consider a subject who is operating
on the lower limb of the Yes-No iso-
sensitivity curve, and suppose that on

6 Conceptually, there is no special affinity
between learning and thresholds, but in
practice there are good reasons why it is
easier to graft a learning mechanism on this
threshold model than on the signal detect-
ability model. In both there are three classes
of events that a subject might use to control
his learning: the hypothetical internal ob-
servations, his responses, and what he learns
the presentation to have been. Both the first
and third of these events form statistically
stationary processes over trials, whereas the
response probabilities are changing. Thus,
if the learning process is dependent upon the
responses, the resulting stochastic learning
model is mathematically quite complex and I
do not know how to analyze it. Although the
other two classes of events do not have this
particular complexity, the first can introduce
a different kind. The internal observations
that are assumed to occur in the detectability
model take on values in a continuum, and so
the learning model for this case must be
continuous, and such models are not yet
very well understood. The threshold model
has the distinct advantage that there are only
a small number of observations states, which
results in a mathematically simple learning
process.

Trial i the bias is ti. What is the bias
ti+i on Trial i + 1 ? Of the events oc-
curring in Trial i, the only two that the
subject should rationally take into
account in modifying the bias are his
observation, D or D, and what he
later learned the presentation to have
been, s or n. If he is rational, he
certainly should not let the response
he made on Trial i or, for that matter,
on any of the preceding trials influence
his choice of bias. Because on the
lower limb the bias only tells him
how often to respond N to D observa-
tions, it seems clear that he should not
change it when a D observation oc-
curs. When a D observation results
from an 5 presentation, the bias cer-
tainly should not be lowered, which
would only decrease the Y responses,
and it should not be increased when a
D observation results from an n
presentation. That is, we expect

The exact nature of the transition is
not obvious; however, a linear oper-
ator (Bush & Mosteller, 1955) is
certainly one of the simplest possi-
bilities and one that has received
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considerable attention . So we assu me 6

Then

+ (l-P)p(D\n)(l-0%
+ (l-P)p(D\n)ti

= ti{Pq(s)(l-6)

+Pq(*)0.

Taking expectations over 2; and
then the limit as i — > <» yields as the
asymptotic expected bias

+ &?(«)
, [8]

where

Similarly, we postulate the follow-
ing learning process for the upper
limb:

and a parallel calculation gives

MOO = lim E («;)

According to Equation 9,rthe quan-
fl Although I will state the operators in

terms of the bias parameters, they could
equally well be stated in terms of the response
probabilities because these probabilities are
linear functions of the bias parameters.

tity b depends upon P and upon the
two learning rate parameters 0 and 0',
which presumably in turn depend
upon the payoffs. We have no theory
for this dependence, so in general b
will have to be estimated from the
data or, as when we assume the learn-
ing rates to be equal for symmetric
payoffs, an assumption will have to
be made about 0 and 0'. Clearly, if
0 4= 0 and 0' 4= 0, b ranges from 0
when P = 1 to » when P — 0. At
some point when P is varied the
subject presumably changes from
operating upon the upper limb to the
lower limb. (See Figure 3 where P
varies from 0.1 to 0.9.) We do not
have a general theory for when this
change occurs, but it seems plausible
that it should be somewhere in the
middle range of P values. If so, then
MOO is bounded away from 0 to the
extent that q(s) is less than 1 and tx
is bounded away from 1 to the extent
that q(n) is greater than 0. Or
translated back to the isosensitivity
curve, the upper limb data points are
prevented from being near the corner
of the curve to the extent that q(s) is
less than 1 and the lower limb points
are prevented from being near it to the
extent that q(n) is greater than 0.
An examination of Figures 2 and 3
suggests that the data are consistent
with this statement, which may ex-
plain why the corners seem to be
isolated. It also suggests that in-
formation feedback need not always
be beneficial in inducing subjects to
yield up the desired information, in
this case, the true threshold prob-
abilities, as is often assumed by
modern psychophysicists.

For the two-alternative forced-
choice model, we assume essentially
the same learning process, namely

(1-0X-+0, if (s, n) and (D, D)
(1-0'X, if (n, s) and (D, D}

Vi, otherwise.
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A calculation similar to that for the
Yes- No experiment yields

vv = !/(! + b). D2]
Similarly,

f(l-0)w;+0, if (s, n)and(D, D)
wi+1 = j (1 -6')wi, if (n, s) and (D, D)

I Wi, otherwise

yields
w. = !/(!+ [13]

We note that vx = WK, as seems a
priori reasonable, and that neither
bias depends upon the underlying
probabilities q(n) and q(s) as in the
Yes-No experiment. We also note
that if P = 1/2 and if the learning
rates are equal, then the biases
are symmetric in the sense that
vx = Woo = 1/2.

EMPIRICAL TESTS
To test the model, we have four sets

of data, all collected on W. P. Tanner's
equipment in the Psychophysical Lab-
oratory, Electronic Defense Group,
University of Michigan. Shipley
(1961) ran each of three subjects in,
among other conditions, the Yes-No
and two-alternative forced-choice de-
signs with P = 0.5 and with sym-
metric payoffs. Each condition was
run twice with different stimuli, pure
tones of 500 and 1000 cps. Each pres-
entation, s or n in the Yes-No and
(s, n) or (n, s} in the forced-choice
design, occurred 800 times. Using the
estimation scheme of Figure 4, values
for q(n) and q(s) were obtained for
both limbs. If either or both inter-
sections lay outside the unit square,
I selected the intersection of the 45°
line through the forced-choice data
point and the edge of the unit square
as the final estimate. This incorrectly
attributes all of the error variance to
the Yes-No data point; however,
because of the location of the two
points, the forced-choice point un-

doubtedly has somewhat less binomial
variance. Moreover, the learning
process itself introduces added vari-
ance which more seriously affects our
estimate of the Yes-No point than
of the forced-choice one. Once q (n)
and q(s) are estimated, then the
theoretical location of the data points
on the isosensitivity curves is de-
termined by Equations 1 and 8 or 2
and 11 for the Yes-No experiment
and by Equations 4, 5, 12, and 13 for
the forced-choice experiment, pro-
vided that we know b. If we assume
equal learning rates, then b = 1. The
comparison between data and theory
under that assumption is shown in
Figure 5; it is surprisingly good, but
unfortunately it does not permit us to
decide which limb is being used.
There is some suggestion that it may
be the lower one, for in four of the
six cases that and only that inter-
section is in the unit square, but this is
far from conclusive.

Swets (1959) reported similar data
on three subjects for several different
signal to noise ratios. The plots are
similar to those for Shipley's data;
however, the predictions do not seem
to be quite so accurate. In part this
is due to the smaller sample sizes used
by Swets.

Next, we have the acoustic data
from Tanner, Swets, and Green (1956)
which were presented in Figure 3.
Again, because the payoffs were sym-
metric, we assume equal learning
parameters, so b is determined by P.
The predicted values, assuming that
the P — 0.1 and 0.3 points are on the
lower limb and that the rest are on the
upper one are shown as crosses in
Figure 3; recall that successive pairs of
data points were collected under iden-
tical experimental conditions. The
predictions seem satisfactory for Sub-
ject 1, but less so for Subject 2.
Because no study has yet been made
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500 cps tone 1000 cps tone
Subject I

Subject 2

Subject 3

0 .1

p ( Y | n ) and

FIG. 5. Yes-No and two-alternative forced-choice acoustic (tone in noise) data reported
by Shipley (1961). (The theoretical curves are from the threshold model and the predicted
values—crosses—are asymptotic values derived from a linear learning process.)

of the learning process itself, I do not
know how adequate the assumption
0 = 8' is, but to the extent that it is
wrong errors are introduced into our
predictions.

Comparable predictions for the are the numbers

visual data in Figure 2 are less easy
to make because the isosensitivity
curve was generated by varying the
payoffs, not P. The only information
that we have about the payoffs used
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P

which are the relevant criterion quan-
tities if one assumes that the subjects
maximize expected payoffs and that
they are described by the signal
detectability model. If we assume
that the learning rate parameter asso-
ciated with s presentations, 6, is
proportional to the difference of the
two 5 payoffs, ou — 012, and that 6' is
proportional to 022 — 021, then

Thus, in addition to q(n) and q(s),
there is the free parameter K to be
chosen when fitting data. The values
for q(n) and q(s) we get from Figure 2.
Because it is reasonable that the two
constants of proportionality relating
0 and 6' to payoffs might be the same,

I first tried using K — 1 to predict the
responses. For three of the subjects
this seemed satisfactory, but by trial
and error I found that K = 0.5 is a
much better choice for Subject 1. The
results are shown in Table 2. Note
the rather sharp break in both the
observed and predicted values of
pa(Y\n) as one moves from the lower
to the upper limb, as indicated by
the bold face vertical bars in the table,
even though the changes in /3 are
small in that region.

k-ALTERNATIVE FORCED-CHOICE
EXPERIMENTS

The two-alternative forced-choice
design can be readily generalized to
one having k intervals, exactly one of
which contains the stimulus. It is not
easy to work out the response prob-
abilities for any model, including this
one, except under the assumption that

TABLE 2

ASYMPTOTIC LEARNING MODEL PREDICTIONS OF VISUAL DATA

Sub-
ject

1

2

3

4

05

05

03

07

80

85

83

74

K

5

1

1

1

s

p(Y\s) observed
predicted

p(Y\n) observed
predicted

p(Y\s) observed
predicted

p(Y\n) observed
predicted

8

64
64
2
4

48
58
0
3

f>(Y\s) observed 45
predicted 64

p(Y\n) observed 0
predicted 2

p(Y\s) observed
predicted

p(Y\n) observed
predicted

43
42
0
4

8

64
64
3
4

59
58
0
3

56
64
2
2

43
42
4
4

6

82
67
2
4

73
63
2
4

—
—
—

64
47
6
4

4

79
72
6
4

75
69
3
4

64
70
2
3

64
53
12
5

2.5

—
—
—
—

71
74
4
4

73
76
8
3

56
60
5
6

2

63
76
5
5

80
86
11
12

65
77
1
3

71
77
17
18

1.5

85
84
20
26

90
86
19
14

78
85
15
13

76
78
14
22

i

77
86
32
33

84
87
23
18

90
86
18
18

77
79
18
27

.75

89
87
19
39

87
88
18
22

84
86
14
21

84
81
34
32

.75

84
87
29
39

89
88
25
22

87
86
24
21

86
81
34
32

.50

88
89
50
48

95
89
25
28

88
87
12
28

83
83
35
40

.25

91
93
65
65

93
91
41
42

85
90
33
43

87
84
49
42

.16

96
95
78
74

95
93
66
52

94
92
59
54

93
91
74
66

Note.—-Response proportions predicted by asymptotic learning model for visual detection data reported by
Swets, Tanner, and Birdsall (1955, 1961). The vertical bold face line indicates the transition from lower to upper
limb. Each observed proportion is estimated from 200 observations. Decimal points have been systematically
omitted.
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Pk(O

FIG. 6. Maximum and minimum curves
of the proportion of correct responses in
/fe-alternative forced-choice designs. (The
data points for the detection of a tone in
noise are from Swets, 1959.)

the asymptotic response biases are
equal. In the two-alternative case,
this means setting vx = 1/2, which is
what happens in the learning model
if the learning rates are equal and
P = 1/2. In general, it means that in
any ambiguous situation the several
possibilities are used equally often.
The effect of this symmetry assump-
tion is to make the probability of a
correct response independent of the
stimulus presentation. Correct re-
responses can occur in the following
ways: A response is always correct
when the stimulus produces a D
observation and the_ k — 1 noise pre-
sentation produce D observations; it
is correct one-half the time when 5
and exactly one n produce D observa-

tions, which can happen . /
m(

is correct one-feth of the time when
all intervals produce D observations.
These are the only ways a correct
response can occur, so

+i

-e(»)]}. [14]
For*> 2,pt(Q = (1 + A)/2, where
A ~ q(s) — q(n), whereas for k > 2,
pk(C) depends upon both q(n) and
q(s) and not just upon their difference.
Thus, in contrast to other theories,
pk(C) is not uniquely determined by
pz(C). To get an idea of the freedom
involved, assume A is fixed, then the
limiting possibilities are when q (n) =0
and q(s) — A, in which case

p,(Q = [A(k- 1) + !]/*, [15]
and when q (n) = 1 — A and q (s) = 1 ,
in which case

ways; it is correct one-third of the
time when s and exactly two n's pro-
duce D observations; etc.; and it

Typical examples of these bounds are
shown in Figure 6. The data points
are from Swets (1959) ; clearly they
fall within the bounds.

Swets (1959) ran three other sub-
jects in the Yes- No and the two- and
four-alternative forced-choice designs.
If we estimate the values of q(s) and
q(ri) from the Yes- No and two-
alternative forced-choice data using
the method of Figure 4, then we can
predict what should be observed in the
four-alternative forced-choice experi-
ment.7 Because it is not always clear
from the Yes-No data which limb was

7 I wish to thank J. A. Swets for providing
me with the raw data to make these calcu-
lations.
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TABLE 3
FOUR-ALTERATIVE FORCED-CHOICE EXPERIMENT

Subject

1

2

3

Signal to
noise ratio

in db

9.4
14.5
16.6

9.4
11.7
14.5
16.6

9.4
11.7
14.5
16.6

Estimated parameters

Upper limb

«(»)

13
0
0

19
17

7
2

0
7
0
0

«w
77
87
89

72
74
78
83

69
80
83
92

Lower l imb

«(»)

25
13
11

33
28
29
19

25
27
17
8

aW

89
100
100

86
86

100
100

94
100
100
100

P>(C)

Upper
limb

67
90
92

58
62
75
84

76
77
88
94

Lower
limb

62
82
85

53
57
64
75

65
66
80
88

Observed

62
82
88

52
63
75
79

68
73
85
90

Note.—Estimates of «(«) and q(s) from Swets (1959) Yes-No and two-alternative forced-choice data, and the
predicted and observed values of #4(0. Each subject made 500 observations at each signal level in each experi-
mental condition. Decimal points have been omitted on all the probabilities.

used, the calculations are reported for
both limbs in Table 3. These predic-
tions suggest that Subject 1 was
operating on the lower limb; that
Subject 2 was on the upper limb for
at least the three most intense stimuli;
and that the picture is not clear for
Subject 3. It is certainly the case
that one of the two predictions is
always near the observed value.

Tanner, Swets, and Green (1956)
report four-alternative forced-choice
data for the same subjects whose Yes-
No data are shown in Figure 3. Esti-
mating q(n) =0.11 and q(s) = 0.68
from the Yes-No data for Subject 1,
we predict p4(O = 0.63; 0.60 was ob-
served. For Subject 2, q(n) = 0.28,
q(s) = 0.74, and we predict pt(C)
= 0.51; 0.56 was observed. In both
cases, p*(C) was estimated from 297
observations.

DISTORTION OF THE PSYCHOMETRIC
FUNCTION

A plot of the Yes-No detection
probability versus a physical measure

of the stimulus magnitude is usually
called a psychometric function. For
example, in the von Bekesy-Stevens
quantal theory, the theoretical func-
tion is 0 for all stimulus increments
less than one amount, 1 for all incre-
ments larger than another, and a
straight line between these two points.
As no distinction has been made in the
quantal literature between what we
are calling q(s) and px(Y\s), it is not
perfectly clear which function is
meant. There is no question that
in testing the theory, estimates of
px(Y\s) have been plotted against
increment size, but an examination of
the theory itself suggests that we
should interpret it as referring to q (s),

Assuming that the above learning
model for biasing is correct, the
relation between p»(Y\s) and q(s) for
the lower limb bias is obtained from
Equations 1 and 8; it is

b (V\*\ = f flM = ^ 'Koo \ -* \ ̂ } — l"X{i V-1/ / \ i i / \1 q(s) + bq(n)

Because bq(n) > 0, px(Y\s) < q(s)
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on the lower limb, and its maximum
value, 1/[1 + &<?(«)], occurs when
q(s) = 1. Similarly, Equations 2 and
11 yield the result for the upper limb:

p*(Y\s) = < z ( s ) + M » [ l -g(5)]

In this case p(Y\s) > 9(5), and its
minimum value, q(n) + [1 — <?(»)]/
(1 + &), occurs when q(s) = q(n). If
we suppose that q(s) is a rectilinear
function having p = 1 and p = 0
intercepts in 2:1 ratio and that
g(w) = 0.05, then we get plots like
those shown in Figure 7, where & is a
parameter.

Once again, we are not sure when
the subject switches from lower to
upper limb biasing. It is clear that
such a switch must occur, for when he
is on the lower limb px(Y\s) can never
reach 1, no matter how intense the
stimulus is.

I 2
QUANTAL UNITS

FIG. 7. Theoretical upper and lower limb
psychometric functions when q(s) is assumed
to be rectilinear with a 2:1 ratio of intercepts,
q(n) = 0.05 and b = 1/10, 1, and 10. (The
upper limb curves are above, and the lower
limb ones are below the q(s) curve, which is
indistinguishable from the lower limb
b = 1/10 curve.)

The following hypothesis is cur-
rently under investigation and it ap-
pears to have some merit. In neural
quantum theory (Stevens etal., 1941),
those stimulus increments that cause
zero and one quantum changes are
assumed not to be detected, whereas
those that cause changes of two or
more quanta are. Let us_suppose that
this defines our states D and D, re-
spectively. In addition to this as-
sumption, let us postulate that the
subject also uses the change in the
number of quanta excited to decide
which bias to use. Specificially, let
us suppose that there is an integer
h > 0, such that if the stimulus pro-
duces a change of fewer than h quanta,
he imposes a lower limb bias, and that
if it produces a change of h or more,
he imposes an upper limb bias. We
do not know what determines the
choice of h, but presumably it de-
pends in part upon instructions, pres-
entation probabilities, and payoffs.
In any event, we can see what sorts of
psychometric functions result from
different choices for h.

For h — 0, the subject always uses
an upper limb bias; these are the
upper functions shown in Figure 7.
For all other values of h, there are re-
gions of stimulation where either h — 1
or h new quanta are excited by the
stimulus, and so the data will be a
weighted average of the response
curves resulting from lower and upper
limb biases. The probability that h
additional quanta are excited depends
upon the probability that the energy
residue of the background plus the
stimulus exceed h quantal units of
energy. In quantum theory it is
usually assumed that the distribution
of residues is (approximately) uni-
form, in which case we simply have
the following rule: Let 5 denote the
value of the stimulus in quantal units,
ii s < h — 1, then there is a lower
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h - i h = 3

77

1.0

.8

- .6
</>
>
a. .4

.2

0

1.0

.8

.6

.4

.2

0

.2

h = 4

b=IO

QUANTAL UNITS

FIG. 8. Theoretical px(Y\s) psychometric functions for different values of h when q(s)
is assumed to be rectilinear with a 2:1 ratio of intercepts, g(«) = 0.05, and b = 1/10, 1, and 10.
(For h = 3 and 4, the b = 1/10 curve is indistinguishable from the q(s) curve.)

limb bias; if h — 1 < s < h, then
there is a lower limb bias with prob-
ability h — s and an upper limb one
with probability I — (h — s); and for
s > h, there is an upper limb bias.
Using this rule, typical functions are
shown for h = 1, 2, 3, and 4 in Figure
8. For h larger than 4, the functions
are just like those for h — 4, except
that the right hand plateau extends
over h — 3 quanta units.

CONCLUSION

The central conclusion of this paper
is that there is at least one sensory
threshold model for simple detection
experiments which is not clearly wrong
as judged by existing data. Four

features of the model are noteworthy,
of which two are really problems.
First, the biasing effects on the re-
sponse behavior that result from pay-
offs and presentation probabilities
were treated as the asymptotic conse-
quences of a linear learning process,
not as the usually assumed maximiza-
tion of expected payoffs which, when
coupled with this threshold model,
yields totally incorrect results. Sec-
ond, the dependence of the asymptotic
response probabilities on the prob-
abilities of stimulus presentations is
explicit, but the dependence upon the
payoffs is given only in terms of
learning rate parameters and so is
implicit. A theory relating the learn-
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ing parameters to payoffs is needed,
but in the meantime sequential data
should be collected and the parameters
estimated directly as in ordinary
applications of stochastic learning
theory. Third, the threshold analysis
of the Yes-No detection experiment
led to an isosensitivity curve that
consists of two distinct line segments,
but no criterion was developed about
which limb is in use during a par-
ticular experimental run. This leads
to an ambiguity in the estimates of
the true threshold probabilities, which
continually proved to be a bothersome
problem in analyzing data and eval-
uating the model. The data in
Figure 3 and in Table 2 hint at the
possibility that subjects may shift
between the limbs when

On-o

is in the neighborhood of 1.5 or 2,
suggesting that it may be better to
choose presentation probabilities and
payoffs so that ft lies well outside this
transition region. In this way, we can
be reasonably sure whether the sub-
ject is using a lower or upper limb bias.
For example, if the payoff matrix is
symmetric, one might use Ps in the
neighborhood of 0.2 or 0.8, which
places /3 in the neighborhood of 4 or J,
respectively. Finally, the theoretical
effects of this sort of biasing on the
psychometric function were shown to
be quite striking (see Figure 8). If
this, or some such, model is correct,
then fairly subtle analyses of response
data are necessary in order to test
adequately any theory of the psycho-
metric function, such as the neural
quantum theory.
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